Home
Search results “R data mining tool”
Data Mining using R | Data Mining Tutorial for Beginners | R Tutorial for Beginners | Edureka
 
36:36
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R tutorial on "Data Mining using R" will help you understand the core concepts of Data Mining comprehensively. This tutorial will also comprise of a case study using R, where you'll apply data mining operations on a real life data-set and extract information from it. Following are the topics which will be covered in the session: 1. Why Data Mining? 2. What is Data Mining 3. Knowledge Discovery in Database 4. Data Mining Tasks 5. Programming Languages for Data Mining 6. Case study using R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Website: https://www.edureka.co/data-science Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. " Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 78456 edureka!
Data Mining Tool:Rattle R GUI
 
23:27
Link to download R Console: https://cran.r-project.org/
Views: 3414 Chandrakala Badaga
Introduction to Data Science with R - Data Analysis Part 1
 
01:21:50
Part 1 in a in-depth hands-on tutorial introducing the viewer to Data Science with R programming. The video provides end-to-end data science training, including data exploration, data wrangling, data analysis, data visualization, feature engineering, and machine learning. All source code from videos are available from GitHub. NOTE - The data for the competition has changed since this video series was started. You can find the applicable .CSVs in the GitHub repo. Blog: http://daveondata.com GitHub: https://github.com/EasyD/IntroToDataScience I do Data Science training as a Bootcamp: https://goo.gl/OhIHSc
Views: 1024032 David Langer
Decision Tree with R | Complete Example
 
18:44
Also called Classification and Regression Trees (CART) or just trees. R file: https://goo.gl/Kx4EsU Data file: https://goo.gl/gAQTx4 Includes, - Illustrates the process using cardiotocographic data - Decision tree and interpretation with party package - Decision tree and interpretation with rpart package - Plot with rpart.plot - Prediction for validation dataset based on model build using training dataset - Calculation of misclassification error Decision trees are an important tool for developing classification or predictive analytics models related to analyzing big data or data science. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 59407 Bharatendra Rai
Google Analytics Data Mining with R (includes 3 Real Applications)
 
53:31
R is already a Swiss army knife for data analysis largely due its 6000 libraries but until now it lacked an interface to the Google Analytics API. The release of RGoogleAnalytics library solves this problem. What this means is that digital analysts can now fully use the analytical capabilities of R to fully explore their Google Analytics Data. In this webinar, Andy Granowitz, ‎Developer Advocate (Google Analytics) & Kushan Shah, Contributor & maintainer of RGoogleAnalytics Library will show you how to use R for Google Analytics data mining & generate some great insights. Useful Resources:http://bit.ly/r-googleanalytics-resources
Views: 30620 Tatvic Analytics
Text mining with Voyant Tools, no R or any other coding required
 
21:35
Please explore free and beautiful Voyant Tools that allow you to perform any text analysis or even mining - word frequency, clouds, co-occurrence (collocations), spider diagrams, context analysis - anything you dreamt of without any prior programming experience or need to buy expensive software. To those interested in reproducing what we've done and further analyzing comments to Indian political articles (dated March-April and January 2016), please use this link to get the ball rolling: http://voyant-tools.org/?corpus=0c17d82dbd8b04baae655f90db84a672 Lastly, creators of the video are eternally grateful to our Big Data class professor, who believed in us and kept us going despite any technical or analytical difficulties.
Views: 8270 Adventuruous Mind
Social Network Analysis with R | Examples
 
26:25
Social network analysis with several simple examples in R. R file: https://goo.gl/CKUuNt Data file: https://goo.gl/Ygt1rg Includes, - Social network examples - Network measures - Read data file - Create network - Histogram of node degree - Network diagram - Highlighting degrees & different layouts - Hub and authorities - Community detection R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 23737 Bharatendra Rai
Introduction to Text Analytics with R: Overview
 
30:38
The overview of this video series provides an introduction to text analytics as a whole and what is to be expected throughout the instruction. It also includes specific coverage of: – Overview of the spam dataset used throughout the series – Loading the data and initial data cleaning – Some initial data analysis, feature engineering, and data visualization About the Series This data science tutorial introduces the viewer to the exciting world of text analytics with R programming. As exemplified by the popularity of blogging and social media, textual data if far from dead – it is increasing exponentially! Not surprisingly, knowledge of text analytics is a critical skill for data scientists if this wealth of information is to be harvested and incorporated into data products. This data science training provides introductory coverage of the following tools and techniques: – Tokenization, stemming, and n-grams – The bag-of-words and vector space models – Feature engineering for textual data (e.g. cosine similarity between documents) – Feature extraction using singular value decomposition (SVD) – Training classification models using textual data – Evaluating accuracy of the trained classification models Kaggle Dataset: https://www.kaggle.com/uciml/sms-spam-collection-dataset The data and R code used in this series is available here: https://code.datasciencedojo.com/datasciencedojo/tutorials/tree/master/Introduction%20to%20Text%20Analytics%20with%20R -- Learn more about Data Science Dojo here: https://hubs.ly/H0hz5_y0 Watch the latest video tutorials here: https://hubs.ly/H0hz61V0 See what our past attendees are saying here: https://hubs.ly/H0hz6-S0 -- At Data Science Dojo, we believe data science is for everyone. Our in-person data science training has been attended by more than 4000+ employees from over 800 companies globally, including many leaders in tech like Microsoft, Apple, and Facebook. -- Like Us: https://www.facebook.com/datasciencedojo Follow Us: https://twitter.com/DataScienceDojo Connect with Us: https://www.linkedin.com/company/datasciencedojo Also find us on: Google +: https://plus.google.com/+Datasciencedojo Instagram: https://www.instagram.com/data_science_dojo Vimeo: https://vimeo.com/datasciencedojo
Views: 74453 Data Science Dojo
How to Build a Text Mining, Machine Learning Document Classification System in R!
 
26:02
We show how to build a machine learning document classification system from scratch in less than 30 minutes using R. We use a text mining approach to identify the speaker of unmarked presidential campaign speeches. Applications in brand management, auditing, fraud detection, electronic medical records, and more.
Views: 167396 Timothy DAuria
Text Mining In R | Natural Language Processing | Data Science Certification Training | Edureka
 
36:29
** Data Science Certification using R: https://www.edureka.co/data-science ** In this video on Text Mining In R, we’ll be focusing on the various methodologies used in text mining in order to retrieve useful information from data. The following topics are covered in this session: (01:18) Need for Text Mining (03:56) What Is Text Mining? (05:42) What is NLP? (07:00) Applications of NLP (08:33) Terminologies in NLP (14:09) Demo Blog Series: http://bit.ly/data-science-blogs Data Science Training Playlist: http://bit.ly/data-science-playlist - - - - - - - - - - - - - - - - - Subscribe to our channel to get video updates. Hit the subscribe button above: https://goo.gl/6ohpTV Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka - - - - - - - - - - - - - - - - - #textmining #textminingwithr #naturallanguageprocessing #datascience #datasciencetutorial #datasciencewithr #datasciencecourse #datascienceforbeginners #datasciencetraining #datasciencetutorial - - - - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data lifecycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modeling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyze Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyze data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies. For online Data Science training, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free) for more information.
Views: 5415 edureka!
Linear Discriminant Analysis in R | Example with Classification Model & Bi-Plot interpretation
 
20:26
Provides steps for carrying out linear discriminant analysis in r and it's use for developing a classification model. Includes, - Data partitioning - Scatter Plot & Correlations - Linear Discriminant Analysis - Stacked Histograms of Discriminant Function Values - Bi-Plot interpretation - Partition plots - Confusion Matrix & Accuracy - training & testing data - Advantages and disadvantages linear discriminant analysis is an important statistical tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 15648 Bharatendra Rai
Introduction to Cluster Analysis with R - an Example
 
18:11
Provides illustration of doing cluster analysis with R. R File: https://goo.gl/BTZ9j7 Machine Learning videos: https://goo.gl/WHHqWP Includes, - Illustrates the process using utilities data - data normalization - hierarchical clustering using dendrogram - use of complete and average linkage - calculation of euclidean distance - silhouette plot - scree plot - nonhierarchical k-means clustering Cluster analysis is an important tool related to analyzing big data or working in data science field. Deep Learning: https://goo.gl/5VtSuC Image Analysis & Classification: https://goo.gl/Md3fMi R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 112240 Bharatendra Rai
How to Perform K-Means Clustering in R Statistical Computing
 
10:03
In this video I go over how to perform k-means clustering using r statistical computing. Clustering analysis is performed and the results are interpreted. http://www.influxity.com
Views: 206831 Influxity
SOCIAL NETWORKING SITES USING R TOOL
 
04:44
MSC.IT PART 1 SEM 1 SUBJECT: DATA MINING Aim: Using R-Tool , show the analysis for social networking sites.
Views: 871 Priyanka Jadhav
Support Vector Machine (SVM) with R - Classification and Prediction Example
 
16:57
Includes an example with, - brief definition of what is svm? - svm classification model - svm classification plot - interpretation - tuning or hyperparameter optimization - best model selection - confusion matrix - misclassification rate Machine Learning videos: https://goo.gl/WHHqWP svm is an important machine learning tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 41617 Bharatendra Rai
R vs Python | Best Programming Language for Data Science and Analysis | Edureka
 
07:19
***** Python Online Training: https://www.edureka.co/python ***** ***** R Online Training: https://www.edureka.co/r-for-analytics ***** This Edureka video on R vs Python provides you with a short and crisp description of the top two languages used in Data Science and Data Analytics i.e. Python and R (Blog:http://bit.ly/2ClaowR). You will also see the head to head comparison between the two on various parameters and learn why one is preferred over the other in certain aspects. Following topics are covered in the video: 1:30 Various Aspects of Comparison 1:40 Speed 1:56 Legacy 2:13 Code 2:28 Databases 2:45 Practical Agility 3:10 Trends 3:31 Salary 4:25 Syntax Subscribe to our Edureka YouTube channel to get video updates: https://goo.gl/6ohpTV --------------------------------------------------------------------------------------------- Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka ------------------------------------------------------------------------------------------------ #PythonVsR #Python #R #Pythononlinetraining #Javaonlinetraining ----------------------------------------------------------------- For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 90610 edureka!
Forecasting Time Series Data in R | Facebook's Prophet Package 2017 & Tom Brady's Wikipedia data
 
11:51
An example of using Facebook's recently released open source package prophet including, - data scraped from Tom Brady's Wikipedia page - getting Wikipedia trend data - time series plot - handling missing data and log transform - forecasting with Facebook's prophet - prediction - plot of actual versus forecast data - breaking and plotting forecast into trend, weekly seasonality & yearly seasonality components prophet procedure is an additive regression model with following components: - a piecewise linear or logistic growth curve trend - a yearly seasonal component modeled using Fourier series - a weekly seasonal component forecasting is an important tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 23298 Bharatendra Rai
Apriori Algorithm using R tool
 
07:44
watch and learn! for any query comment below
Views: 6015 Vinaykumar Pandey
Naive Bayes Classification with R | Example with Steps
 
14:55
Provides steps for applying Naive Bayes Classification with R. Data: https://goo.gl/nCFX1x R file: https://goo.gl/Feo5mT Machine Learning videos: https://goo.gl/WHHqWP Naive Bayes Classification is an important tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 24411 Bharatendra Rai
Image Recognition & Classification with Keras in R | TensorFlow for Machine Intelligence by Google
 
24:38
Provides steps for applying Image classification & recognition with easy to follow example. R file: https://goo.gl/fCYm19 Data: https://goo.gl/To15db Machine Learning videos: https://goo.gl/WHHqWP Uses TensorFlow (by Google) as backend. Includes, - load keras and EBImage packages - read images - explore images and image data - resize and reshape images - one hot encoding - sequential model - compile model - fit model - evaluate model - prediction - confusion matrix Image Classification & Recognition with Keras is an important tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 22133 Bharatendra Rai
R tutorial: Introduction to cleaning data with R
 
05:18
Learn more about cleaning data with R: https://www.datacamp.com/courses/cleaning-data-in-r Hi, I'm Nick. I'm a data scientist at DataCamp and I'll be your instructor for this course on Cleaning Data in R. Let's kick things off by looking at an example of dirty data. You're looking at the top and bottom, or head and tail, of a dataset containing various weather metrics recorded in the city of Boston over a 12 month period of time. At first glance these data may not appear very dirty. The information is already organized into rows and columns, which is not always the case. The rows are numbered and the columns have names. In other words, it's already in table format, similar to what you might find in a spreadsheet document. We wouldn't be this lucky if, for example, we were scraping a webpage, but we have to start somewhere. Despite the dataset's deceivingly neat appearance, a closer look reveals many issues that should be dealt with prior to, say, attempting to build a statistical model to predict weather patterns in the future. For starters, the first column X (all the way on the left) appears be meaningless; it's not clear what the columns X1, X2, and so forth represent (and if they represent days of the month, then we have time represented in both rows and columns); the different types of measurements contained in the measure column should probably each have their own column; there are a bunch of NAs at the bottom of the data; and the list goes on. Don't worry if these things are not immediately obvious to you -- they will be by the end of the course. In fact, in the last chapter of this course, you will clean this exact same dataset from start to finish using all of the amazing new things you've learned. Dirty data are everywhere. In fact, most real-world datasets start off dirty in one way or another, but by the time they make their way into textbooks and courses, most have already been cleaned and prepared for analysis. This is convenient when all you want to talk about is how to analyze or model the data, but it can leave you at a loss when you're faced with cleaning your own data. With the rise of so-called "big data", data cleaning is more important than ever before. Every industry - finance, health care, retail, hospitality, and even education - is now doggy-paddling in a large sea of data. And as the data get bigger, the number of things that can go wrong do too. Each imperfection becomes harder to find when you can't simply look at the entire dataset in a spreadsheet on your computer. In fact, data cleaning is an essential part of the data science process. In simple terms, you might break this process down into four steps: collecting or acquiring your data, cleaning your data, analyzing or modeling your data, and reporting your results to the appropriate audience. If you try to skip the second step, you'll often run into problems getting the raw data to work with traditional tools for analysis in, say, R or Python. This could be true for a variety of reasons. For example, many common algorithms require variables to be arranged into columns and for missing values to be either removed or replaced with non-missing values, neither of which was the case with the weather data you just saw. Not only is data cleaning an essential part of the data science process - it's also often the most time-consuming part. As the New York Times reported in a 2014 article called "For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights", "Data scientists ... spend from 50 percent to 80 percent of their time mired in this more mundane labor of collecting and preparing unruly digital data, before it can be explored for useful nuggets." Unfortunately, data cleaning is not as sexy as training a neural network to identify images of cats on the internet, so it's generally not talked about in the media nor is it taught in most intro data science and statistics courses. No worries, we're here to help. In this course, we'll break data cleaning down into a three step process: exploring your raw data, tidying your data, and preparing your data for analysis. Each of the first three chapters of this course will cover one of these steps in depth, then the fourth chapter will require you to use everything you've learned to take the weather data from raw to ready for analysis. Let's jump right in!
Views: 36540 DataCamp
R programming for beginners – statistic with R (t-test and linear regression) and dplyr and ggplot
 
15:49
R programming for beginners - This video is an introduction to R programming. I have another channel dedicated to R teaching: https://www.youtube.com/c/rprogramming101 In this video I provide a tutorial on some statistical analysis (specifically using the t-test and linear regression). I also demonstrate how to use dplyr and ggplot to do data manipulation and data visualisation. Its R programming for beginners really and is filled with graphics, quantitative analysis and some explanations as to how statistics work. If you’re a statistician, into data science or perhaps someone learning bio-stats and thinking about learning to use R for quantitative analysis, then you’ll find this video useful. Importantly, R is free. If you learn R programming you’ll have it for life. This video was sponsored by the University of Edinburgh. Find out more about their programmes at http://edin.ac/2pTfis2 This channel focusses on global health and public health - so please consider subscribing if you’re someone wanting to make the world a better place – I’d love to you join this community. I have videos on epidemiology, study design, ethics and many more.
Clean Data Outliers Using R Programming
 
05:39
Trending Now: Buzzed▶️ https://amzn.to/2ExC1n5 Clean Data Outliers Using R Programming. I built this tool today to help me clean some outlier data from a data-set. Get the code and modify it to your liking. Hope this helps. Copy the Code Link and Like This Page and Subscribe: http://devgin.com/clean-data-r-programming/ ----------------------------------------------------------------------------------------------- Hello YouTubers. I include some of the equipment and reviews in the comments because I know many of you out there want to create your own reviews, courses, and tutorials. Creating content is not an easy task. In the links below, I actually own the products and have reviews on some of them. Please help my channel out by exploring some of these options if you choose to create online content on your own. ----------------------------------------------------------------------------------------------- MICROPHONE - https://amzn.to/2LYfJkr BACKPACK - https://amzn.to/2Ep4uez GREEN SCREEN - https://amzn.to/2JVzMgP TRIPOD - https://amzn.to/2Eo2wv4 HOMEPAGE - https://www.markgingrass.com/ REVIEWS/BLOG - https://www.markgingrass.com/blogs/reviews UDEMY COURSES - https://www.udemy.com/cplusplusintro/?couponCode=SHOPCPP0001 ----------------------------------------------------------------------------------------------- SOCIAL MEDIA FB - https://www.facebook.com/GingrassOnline/ INSTA: https://www.instagram.com/markgingrass/ ----------------------------------------------------------------------------------------------- Hands on Programming Book: https://amzn.to/2YMxqor VBA Book: https://amzn.to/2YIPIXQ VBA Book: https://amzn.to/2YLzOvE Interested in C++ Videos? Try this playlist below! ------------------------------------------------------ 1. https://youtu.be/_iHMXDzyrhk 2. https://youtu.be/k4r8I7qMU7w 3. https://youtu.be/VzmpwSKVtl8 4. https://youtu.be/GrswnBf_6nU 5. https://youtu.be/FkfxIxNyHo0 6. https://youtu.be/tmi15fqICYY 7. https://youtu.be/3cmkmTs3y84 8.1 https://youtu.be/KXgN_8Zq5Kk 8.2 https://youtu.be/C1xWJ1Phj2M 8.3 https://youtu.be/DpEqA9-s-bs 9. https://youtu.be/FlUy8QtrzkQ 10. https://youtu.be/653uG59ivNQ 11. https://youtu.be/FKw-G8H9xrs 13. https://youtu.be/FGmG8cvAA7g 14. https://youtu.be/R2cViOOgA2w 14.2 https://youtu.be/pp7Xq1gbym4 15. https://youtu.be/9en3IQqpyjY 16. https://youtu.be/SisaLVV8Ws8 17. https://youtu.be/mU3yjD4aWwc 18. https://youtu.be/6N5bBjjxICo 19. https://youtu.be/hv0lv783KqQ
Views: 10676 Mark Gingrass
Neural Networks in R: Example with Categorical Response at Two Levels
 
23:07
Provides steps for applying artificial neural networks to do classification and prediction. R file: https://goo.gl/VDgcXX Data file: https://goo.gl/D2Asm7 Machine Learning videos: https://goo.gl/WHHqWP Includes, - neural network model - input, hidden, and output layers - min-max normalization - prediction - confusion matrix - misclassification error - network repetitions - example with binary data neural network is an important tool related to analyzing big data or working in data science field. Apple has reported using neural networks for face recognition in iPhone X. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 29842 Bharatendra Rai
Association Rule Mining in R
 
10:36
In this video you will learn how to do Association Rule Mining using R. Also watch our regression & Logistic regression videos on our channel. To Learn Analytics Contact [email protected] Watch all our videos here-http://analyticuniversity.com/
Views: 9304 Analytics University
Text Mining in R Tutorial: Term Frequency & Word Clouds
 
10:23
This tutorial will show you how to analyze text data in R. Visit https://deltadna.com/blog/text-mining-in-r-for-term-frequency/ for free downloadable sample data to use with this tutorial. Please note that the data source has now changed from 'demo-co.deltacrunch' to 'demo-account.demo-game' Text analysis is the hot new trend in analytics, and with good reason! Text is a huge, mainly untapped source of data, and with Wikipedia alone estimated to contain 2.6 billion English words, there's plenty to analyze. Performing a text analysis will allow you to find out what people are saying about your game in their own words, but in a quantifiable manner. In this tutorial, you will learn how to analyze text data in R, and it give you the tools to do a bespoke analysis on your own.
Views: 68318 deltaDNA
ROC Curve & Area Under Curve (AUC) with R - Application Example
 
19:40
Provides easy to apply example obtaining ROC curve and AUC using R. Data: https://goo.gl/VoHhyh Machine Learning videos: https://goo.gl/WHHqWP Includes an example with, - logistic regression model - confusion matrix - misclassification rate - rocr package - accuracy versus cutoff curve - identifying best cutoff values for best accuracy - roc curve - true positive rate (tpr) or sensitivity - false positive rate (fpr) or '1-specificity' - area under curve (auc) roc curve is an important model evaluation tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 47011 Bharatendra Rai
KEEL Data mining tool demo
 
34:02
KEEL Data minig tool Demo of installation and Working
Views: 4228 Manukumar K J
Import Data, Copy Data from Excel to R CSV & TXT Files | R Tutorial 1.5 |MarinStatsLectures
 
06:59
Import Data, Copy Data from Excel (or other spreadsheets) to R: CSV & TXT Files with Free Practice Dataset: (https://bit.ly/2rOfgEJ) Need More Statistics and R Programming Tutorials? (https://bit.ly/2Fhu9XU) How to Import CSV data into R or How to Import TXT files into R from Excel or other spreadsheets using function in R ►How to import CSV data into R? We will be using "read.table" function to import comma separated data into R ► How to import txt data file into R? You will learn to use "read.delim" function to import the tab-delimited text file into R ► You will also learn to use "file.choose" argument for file location, "header" argument to let R know the data has headers or variable names and "sep" argument to let R know how the data values are separated. ►►Download the dataset here: https://statslectures.com/r-scripts-datasets ►►Like to support us? You can Donate https://bit.ly/2CWxnP2 or Share the Videos! ►► Watch More: ► Intro to Statistics Course: https://bit.ly/2SQOxDH ►R Tutorials for Data Science https://bit.ly/1A1Pixc ►Getting Started with R (Series 1): https://bit.ly/2PkTneg ►Graphs and Descriptive Statistics in R (Series 2): https://bit.ly/2PkTneg ►Probability distributions in R (Series 3): https://bit.ly/2AT3wpI ►Bivariate analysis in R (Series 4): https://bit.ly/2SXvcRi ►Linear Regression in R (Series 5): https://bit.ly/1iytAtm ►ANOVA series https://bit.ly/2zBwjgL ►Linear Regression Concept and with R https://bit.ly/2z8fXg1 ►Puppet Master of Statistics: https://bit.ly/2RDAAv4 ►Hypothesis Testing: Concepts in Statistics https://bit.ly/2Ff3J9e ◼︎ Table of Content 0:00:17 What are the two main file types for saving a data file (CSV and TXT) 0:00:36 How to save an Excel file as a CSV file (comma-separated value) 0:01:10 How to open a CSV data file in Excel 0:01:20 How to open a CSV file in a text editor 0:01:36 How to import CSV file into R? using read.csv function 0:01:44 How to access the help menu for different commands/functions in R 0:02:04 How to specify file location for R? using file.choose argument on read.csv function 0:02:31 How to let R know our data has headers or variable names when importing the data into R? By using the “header” argument on read.csv function 0:03:22 How to import CSV file into R? using read.table function 0:03:38 How to specify the file location for the read.table function in R? using file.choose argument 0:03:46 How to specify how variables/columns are separated when importing data into R? the "sep" argument on read.table function will do that; for example if you don't specify that your data is comma separated, R ends up reading it all in as one variable 0:04:10 How to save a file in Excel as tab-delimited text (TXT) file 0:04:50 How to open a tab-delimited (.TXT) data file in a text editor 0:05:07 How to open a tab-delimited (.TXT) data file in excel 0:05:20 How to import tab-delimited (.TXT) data file into R? using read.delim function 0:05:44 How to specify the file path for read.delim function in R? using file.choose argument 0:06:06 How to import tab-delimited (.TXT) data file into R? using read.table function 0:06:23 How to specify that the data has headers or variable names when importing the data into R? using header argument on read.table function This video is a tutorial for programming in R Statistical Software for beginners, using RStudio. Follow MarinStatsLectures Subscribe: https://goo.gl/4vDQzT website: https://statslectures.com Facebook:https://goo.gl/qYQavS Twitter:https://goo.gl/393AQG Instagram: https://goo.gl/fdPiDn Our Team: Content Creator: Mike Marin (B.Sc., MSc.) Senior Instructor at UBC. Producer and Creative Manager: Ladan Hamadani (B.Sc., BA., MPH) These videos are created by #marinstatslectures to support some courses at The University of British Columbia (UBC) (#IntroductoryStatistics and #RVideoTutorials for Health Science Research), although we make all videos available to the everyone everywhere for free. Thanks for watching! Have fun and remember that statistics is almost as beautiful as a unicorn!
R vs Python? Best Programming Language for Data Science?
 
02:08
R vs Python. Here I argue why Python is the best language for doing data science. Answering the question 'What is the best programming language for' is never black and white and there will be circumstances when python is not the best choice. Python is, though, the best general programming language. It is well supported, comparatively simple to learn, has a wealth of libraries specifically designed for data science such as pandas for data analysis and matplotlib for data visualization, and is extremely versatile. You won't regret learning python for data science. My Python Course - https://www.youtube.com/watch?v=Aah3TmR-dHc&list=PLtb2Lf-cJ_AWhtJE6Rb5oWf02RC2qVU-J
Views: 33704 Python Programmer
Random Forest in R - Classification and Prediction Example with Definition & Steps
 
30:30
Provides steps for applying random forest to do classification and prediction. R code file: https://goo.gl/AP3LeZ Data: https://goo.gl/C9emgB Machine Learning videos: https://goo.gl/WHHqWP Includes, - random forest model - why and when it is used - benefits & steps - number of trees, ntree - number of variables tried at each step, mtry - data partitioning - prediction and confusion matrix - accuracy and sensitivity - randomForest & caret packages - bootstrap samples and out of bag (oob) error - oob error rate - tune random forest using mtry - no. of nodes for the trees in the forest - variable importance - mean decrease accuracy & gini - variables used - partial dependence plot - extract single tree from the forest - multi-dimensional scaling plot of proximity matrix - detailed example with cardiotocographic or ctg data random forest is an important tool related to analyzing big data or working in data science field. Deep Learning: https://goo.gl/5VtSuC Image Analysis & Classification: https://goo.gl/Md3fMi R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 67050 Bharatendra Rai
Spatial Data Mining I: Essentials of Cluster Analysis
 
01:07:14
Whenever we look at a map, it is natural for us to organize, group, differentiate, and cluster what we see to help us make better sense of it. This session will explore the powerful Spatial Statistics techniques designed to do just that: Hot Spot Analysis and Cluster and Outlier Analysis. We will demonstrate how these techniques work and how they can be used to identify significant patterns in our data. We will explore the different questions that each tool can answer, best practices for running the tools, and strategies for interpreting and sharing results. This comprehensive introduction to cluster analysis will prepare you with the knowledge necessary to turn your spatial data into useful information for better decision making.
Views: 30557 Esri Events
Rattle R Gui  Tool Bar
 
00:26
Rattle is a Gui written as a data mining and training tool for the R statistical programming language. Rattle is used by government departments, not for profits, and within the business community. Rattle is an open source project, and is free available from http://www.togaware.com . Rattle is currently used in business, scientific, law enforcement, defense and environmental areas.
Views: 3778 OZg3n1u5
R Tutorial 21: Binning data
 
03:20
R Tutorial 21: Binning data Explains how to Bin / Bucket Data in R using Cut, Pretty and Range Functions in R. It is also used to convert continuous variable to categorical variables. The software that is used for data mining / machine learning / data science / advanced analytics statistical computing and mathematical problem solving. For more detailed discussions on various topics checkout: http://rstatistics.net/ http://rstatistics.net/r-tutorial-exercise-for-beginners/ Get regular awesome tips on R programming twitter: http://twitter.com/r_programming Like our 'One R Tip A Day' facebook page and check get notifications in the 'like' button dropdown to get nice R tips on your news feed every day! http://facebook.com/rtipaday Subscribe NOW! by clicking the 'Subscribe Button'. For Best Results, watch in HD. R is world's most widely used open source statistical programming language. It's the # 1 choice of data scientists and supported by a vibrant and talented community of contributors. R is taught in universities and deployed in businesses worldwide. This latest R Programming Course for Data Science is most suitable for Non-Programmer statisticians and Newbies who want to become the most coveted Data science professional that most companies are looking for.
Views: 36213 LearnR
K-Means Clustering Algorithm - Cluster Analysis | Machine Learning Algorithm | Data Science |Edureka
 
50:19
( Data Science Training - https://www.edureka.co/data-science ) This Edureka k-means clustering algorithm tutorial video (Data Science Blog Series: https://goo.gl/6ojfAa) will take you through the machine learning introduction, cluster analysis, types of clustering algorithms, k-means clustering, how it works along with an example/ demo in R. This Data Science with R tutorial video is ideal for beginners to learn how k-means clustering work. You can also read the blog here: https://goo.gl/QM8on4 Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #kmeans #clusteranalysis #clustering #datascience #machinelearning How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 73013 edureka!
Logistic Regression in R | Machine Learning Algorithms | Data Science Training | Edureka
 
01:09:12
( Data Science Training - https://www.edureka.co/data-science ) This Logistic Regression Tutorial shall give you a clear understanding as to how a Logistic Regression machine learning algorithm works in R. Towards the end, in our demo we will be predicting which patients have diabetes using Logistic Regression! In this Logistic Regression Tutorial video you will understand: 1) The 5 Questions asked in Data Science 2) What is Regression? 3) Logistic Regression - What and Why? 4) How does Logistic Regression Work? 5) Demo in R: Diabetes Use Case 6) Logistic Regression: Use Cases Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 89805 edureka!
Prediction of Student Results #Data Mining
 
08:14
We used WEKA datamining s-w which yields the result in a flash.
Views: 34254 GRIETCSEPROJECTS
Introduction of Orange:A data visualization and data mining tool.
 
03:50
Orange: A data visualization and data mining tool, drag and drop method to create neural networks. Easy tool to get start. For more information visit- https://www.matlabsolutions.com/ Like us on Facebook: https://www.facebook.com/MATLABsolutions/ Tweet to us: https://twitter.com/matlabsolution1 Follow us on Instagram: https://www.instagram.com/matlabsolutionss/
Views: 147 MATLAB Solutions
Getting Started with Orange 19: How to Import Text Documents
 
03:20
How to import your own text files, create corpus and define custom class values from scratch. License: GNU GPL + CC Music by: http://www.bensound.com/ Website: https://orange.biolab.si/ Created by: Laboratory for Bioinformatics, Faculty of Computer and Information Science, University of Ljubljana
Views: 13681 Orange Data Mining
Getting Started with Spatial Data Analysis in R
 
49:31
Spatial and spatial-temporal data have become pervasive nowadays. We are constantly generating spatial data from route planners, sensors, mobile devices, and computers in different fields like Transportation, Agriculture, Social Media. These data need to be analyzed to generate hidden insights that can improve business processes, help fight crime in cities, and much more. Simply creating static maps from these data is not enough. In this webinar we shall look at techniques of importing and exporting spatial data into R; understanding the foundation classes for spatial data; manipulation of spatial data; and techniques for spatial visualization. This webinar is meant to give you introductory knowledge of spatial data analysis in R needed to understand more complex spatial data modeling techniques. In this webinar, we will cover the following topics: -Why use R for spatial analysis -Packages for spatial data analysis -Types of spatial data -Classes and methods in R for spatial data analysis -Importing and exporting spatial data -Visualizing spatial data in R
Views: 49781 Domino Data Lab
Active Tutorship in Adaptive e-learning process using data mining tools
 
15:34
Presentation at ICERI 2013 - Sevilla 18-20 November 2013 - Slides available: http://prezi.com/mypvz2pnomdt/active-tutorship-in-adaptive-e-learning-process-using-data-mining-tools/
Views: 213 Alessandro Pagano
Hands-on dplyr tutorial for faster data manipulation in R
 
38:57
dplyr is a new R package for data manipulation. Using a series of examples on a dataset you can download, this tutorial covers the five basic dplyr "verbs" as well as a dozen other dplyr functions. Watch the follow-up tutorial: http://youtu.be/2mh1PqfsXVI View the R Markdown document: http://rpubs.com/justmarkham/dplyr-tutorial Download the source document: https://github.com/justmarkham/dplyr-tutorial Read about why I love dplyr: https://www.dataschool.io/dplyr-tutorial-for-faster-data-manipulation-in-r/ Tutorial contents: 1. Introduction to dplyr (starts at 0:00) 2. Loading dplyr and the example dataset (starts at 2:29) 3. Understanding "local data frames" (starts at 3:23) 4. Verb #1: `filter` (starts at 5:17) 5. Verb #2: `select`, plus `contains`, `starts_with`, `ends_with`, `matches` (starts at 7:54) 6. Using chaining syntax for more readable code (starts at 9:34) 7. Verb #3: `arrange` (starts at 12:53) 8. Verb #4: `mutate` (starts at 13:55) 9. Verb #5: `summarise`, plus `group_by`, `summarise_each`, `n`, `n_distinct`, `tally` (starts at 15:31) 10. Window functions: `min_rank`, `top_n`, `lag` (starts at 26:47) 11. Convenience functions: `sample_n`, `sample_frac`, `glimpse` (starts at 32:44) 12. Connecting to databases (starts at 34:21) == RESOURCES == Reference manual and vignettes: http://cran.r-project.org/web/packages/dplyr/index.html July 2014 webinar: http://pages.rstudio.net/Webinar-Series-Recording-Essential-Tools-for-R.html July 2014 webinar code: https://github.com/rstudio/webinars/tree/master/2014-01 Tutorial by Hadley Wickham: https://www.dropbox.com/sh/i8qnluwmuieicxc/AAAgt9tIKoIm7WZKIyK25lh6a GitHub repo: https://github.com/hadley/dplyr List of releases: https://github.com/hadley/dplyr/releases == LET'S CONNECT! == Newsletter: https://www.dataschool.io/subscribe/ Twitter: https://twitter.com/justmarkham Facebook: https://www.facebook.com/DataScienceSchool/ LinkedIn: https://www.linkedin.com/in/justmarkham/
Views: 171854 Data School
Principal Component Analysis in R: Example with Predictive Model & Biplot Interpretation
 
23:44
Provides steps for carrying out principal component analysis in r and use of principal components for developing a predictive model. Link to code file: https://goo.gl/SfdXYz Includes, - Data partitioning - Scatter Plot & Correlations - Principal Component Analysis - Orthogonality of PCs - Bi-Plot interpretation - Prediction with Principal Components - Multinomial Logistic regression with First Two PCs - Confusion Matrix & Misclassification Error - training & testing data - Advantages and disadvantages principal component analysis is an important statistical tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 34074 Bharatendra Rai
The Best Way to Prepare a Dataset Easily
 
07:42
In this video, I go over the 3 steps you need to prepare a dataset to be fed into a machine learning model. (selecting the data, processing it, and transforming it). The example I use is preparing a dataset of brain scans to classify whether or not someone is meditating. The challenge for this video is here: https://github.com/llSourcell/prepare_dataset_challenge Carl's winning code: https://github.com/av80r/coaster_racer_coding_challenge Rohan's runner-up code: https://github.com/rhnvrm/universe-coaster-racer-challenge Come join other Wizards in our Slack channel: http://wizards.herokuapp.com/ Dataset sources I talked about: https://github.com/caesar0301/awesome-public-datasets https://www.kaggle.com/datasets http://reddit.com/r/datasets More learning resources: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-data-science-prepare-data http://machinelearningmastery.com/how-to-prepare-data-for-machine-learning/ https://www.youtube.com/watch?v=kSslGdST2Ms http://freecontent.manning.com/real-world-machine-learning-pre-processing-data-for-modeling/ http://docs.aws.amazon.com/machine-learning/latest/dg/step-1-download-edit-and-upload-data.html http://paginas.fe.up.pt/~ec/files_1112/week_03_Data_Preparation.pdf Please subscribe! And like. And comment. That's what keeps me going. And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 193003 Siraj Raval
Statistical Tool R for SWAT
 
04:59
The statistical programming tool 'R' is also open source [7A] In order to get a better result from SWAT we need to test the parameter ranges and each time we have to run (for Manuel calibration). If we use excel we have to plot each time which is time consuming and tedious. Therefore, we can program the statistical performance equations like NSE MSE or Percent Bias etc etc. After that changing the basin parameter we can re run the model without plotting in excel. Recently there is a R package and a multi objective genetic algorithm tool in R is available [7B][7C] Citations: [7A] R Project website to download [7B] R package for SWAT model calibration [7C] Multi objective Automatic Calibration of SWAT Using NSGAII in R
Views: 15512 Kazi Rahman
First time Weka Use : How to create & load data set in Weka : Weka Tutorial # 2
 
04:44
This video will show you how to create and load dataset in weka tool. weather data set excel file https://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/weather.xls
Views: 44549 HowTo
Data Mining Tool: extra features
 
02:17
Some extra features of the Data Mining Tool. Heatmaps and Gene Set Enrichment.
Views: 65 QMRIBioinf
Simple Web Scraping using R
 
08:57
Simple example of using R to extract structured content from web pages. There are several options and libraries that can be considered. if your webpage has data in HTML tables you can use readHTMLTable however in this example the web pages doesnt use HTML tables so we use a straightforward XPath technique to extract page content. We will in the end turn content from web pages into a data frame in R
Views: 39209 Melvin L
TEXT MINING
 
06:17
MSC.IT PART 1 SEM I SUBJECT:DATA MINING Consider the suitable data for text mining and Implement the Text Mining technique using R-Tool
Views: 284 Priyanka Jadhav