Home
Search results “Web structure mining algorithms and data”
Web Mining - Tutorial
 
11:02
Web Mining Web Mining is the use of Data mining techniques to automatically discover and extract information from World Wide Web. There are 3 areas of web Mining Web content Mining. Web usage Mining Web structure Mining. Web content Mining Web content Mining is the process of extracting useful information from content of web document.it may consists of text images,audio,video or structured record such as list & tables. screen scaper,Mozenda,Automation Anywhere,Web content Extractor, Web info extractor are the tools used to extract essential information that one needs. Web Usage Mining Web usage Mining is the process of identifying browsing patterns by analysing the users Navigational behaviour. Techniques for discovery & pattern analysis are two types. They are Pattern Analysis Tool. Pattern Discovery Tool. Data pre processing,Path Analysis,Grouping,filtering,Statistical Analysis, Association Rules,Clustering,Sequential Pattterns,classification are the Analysis done to analyse the patterns. Web structure Mining Web structure Mining is a tool, used to extract patterns from hyperlinks in the web. Web structure Mining is also called link Mining. HITS & PAGE RANK Algorithm are the Popular Web structure Mining Algorithm. By applying Web content mining,web structure Mining & Web usage Mining knowledge is extracted from web data.
What is STRUCTURE MINING? What does STRUCTURE MINING mean? STRUCTURE MINING meaning & explanation
 
04:35
What is STRUCTURE MINING? What does STRUCTURE MINING mean? STRUCTURE MINING meaning - STRUCTURE MINING definition - STRUCTURE MINING explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6UuCPh7GrXznZi0Hz2YQnQ Structure mining or structured data mining is the process of finding and extracting useful information from semi-structured data sets. Graph mining, sequential pattern mining and molecule mining are special cases of structured data mining. The growth of the use of semi-structured data has created new opportunities for data mining, which has traditionally been concerned with tabular data sets, reflecting the strong association between data mining and relational databases. Much of the world's interesting and mineable data does not easily fold into relational databases, though a generation of software engineers have been trained to believe this was the only way to handle data, and data mining algorithms have generally been developed only to cope with tabular data. XML, being the most frequent way of representing semi-structured data, is able to represent both tabular data and arbitrary trees. Any particular representation of data to be exchanged between two applications in XML is normally described by a schema often written in XSD. Practical examples of such schemata, for instance NewsML, are normally very sophisticated, containing multiple optional subtrees, used for representing special case data. Frequently around 90% of a schema is concerned with the definition of these optional data items and sub-trees. Messages and data, therefore, that are transmitted or encoded using XML and that conform to the same schema are liable to contain very different data depending on what is being transmitted. Such data presents large problems for conventional data mining. Two messages that conform to the same schema may have little data in common. Building a training set from such data means that if one were to try to format it as tabular data for conventional data mining, large sections of the tables would or could be empty. There is a tacit assumption made in the design of most data mining algorithms that the data presented will be complete. The other necessity is that the actual mining algorithms employed, whether supervised or unsupervised, must be able to handle sparse data. Namely, machine learning algorithms perform badly with incomplete data sets where only part of the information is supplied. For instance methods based on neural networks. or Ross Quinlan's ID3 algorithm. are highly accurate with good and representative samples of the problem, but perform badly with biased data. Most of times better model presentation with more careful and unbiased representation of input and output is enough. A particularly relevant area where finding the appropriate structure and model is the key issue is text mining. XPath is the standard mechanism used to refer to nodes and data items within XML. It has similarities to standard techniques for navigating directory hierarchies used in operating systems user interfaces. To data and structure mine XML data of any form, at least two extensions are required to conventional data mining. These are the ability to associate an XPath statement with any data pattern and sub statements with each data node in the data pattern, and the ability to mine the presence and count of any node or set of nodes within the document. As an example, if one were to represent a family tree in XML, using these extensions one could create a data set containing all the individuals in the tree, data items such as name and age at death, and counts of related nodes, such as number of children. More sophisticated searches could extract data such as grandparents' lifespans etc. The addition of these data types related to the structure of a document or message facilitates structure mining.
Views: 425 The Audiopedia
PageRank Algorithm - Example
 
10:11
Full Numerical Methods Course: http://bit.ly/numerical-methods-java FREE Beginner Java Course: http://bit.ly/2rMkyxN
Views: 67449 Balazs Holczer
Data Mining Lecture - - Advance Topic | Web mining | Text mining (Eng-Hindi)
 
05:13
Data mining Advance topics - Web mining - Text Mining -~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~- Follow us on : Facebook : https://www.facebook.com/wellacademy/ Instagram : https://instagram.com/well_academy Twitter : https://twitter.com/well_academy
Views: 53786 Well Academy
Hubs & Authorities
 
13:04
Big Data Analytics For more: http://www.anuradhabhatia.com
Views: 26947 Anuradha Bhatia
Page Rank Algorithm
 
17:14
Big Data Analytics For more: http://www.anuradhabhatia.com
Views: 37858 Anuradha Bhatia
Web crawling 3: the algorithm
 
04:59
A web crawler operates like a graph traversal algorithm. It maintains a priority queue of nodes to visit, fetches the top-most node, collects its out-links and pushes them into the queue.
Views: 4290 Victor Lavrenko
Data Collection and Preprocessing | Lecture 6
 
09:55
Deep Learning Crash Course playlist: https://www.youtube.com/playlist?list=PLWKotBjTDoLj3rXBL-nEIPRN9V3a9Cx07 Highlights: Garbage-in, Garbage-out Dataset Bias Data Collection Web Mining Subjective Studies Data Imputation Feature Scaling Data Imbalance #deeplearning #machinelearning
Views: 1529 Leo Isikdogan
Web Mining: Methods and Tools, Elad Segev
 
28:41
Web Mining: Methods and Tools, a lecture by Elad Segev. The lecture was given during the Scholarly use of Web archives: Studying Israeli Politics on the Web,The Fifth Annual Conference of the Israeli Forum for Internet and Technology Researchers held at BIU in May 2013. For All Videos: http://www.youtube.com/playlist?list=PLXF_IJaFk-9DheU5AKzYO5fgCQFFLbAp9 Bar-Ilan University: http://www1.biu.ac.il/en
Views: 4018 barilanuniversity
Search Engines and the PageRank Algorithm
 
11:25
What sets Google aside from other search engines is one of the methods it uses to determine where in its list of results it should include a web page when someone does a search. This method is known as the PageRank algorithm which rates every web page on a scale of 0 to 10. This video explains how the PageRank algorithm recursively propagates the importance of each web page through the link structure of the web. It begins by introducing Larry Page and Sergey Brin, the founders of Google. It covers the importance of using Meta tags to include relevant keywords and descriptions in web pages before submitting them to a search engine for examination by a spider (web crawler). It also emphasises the importance of hyperlinks. This video describes how a web page obtains ‘link juice’ from incoming links, and how this link juice is shared among the other web pages that it links out to. With an example, this video demonstrates how the PageRank algorithm can be applied by first making a heuristic guess at any unknown PageRanks. The formula is then applied repeatedly until reliable values have been calculated. Finally, the video includes some tips on how you can boost the PageRank of pages in your own website.
Views: 1272 Computer Science
BigDataX: Introduction to web search
 
04:00
Big Data Fundamentals is part of the Big Data MicroMasters program offered by The University of Adelaide and edX. Learn how big data is driving organisational change and essential analytical tools and techniques including data mining and PageRank algorithms. Enrol now! http://bit.ly/2rg1TuF
web content mining
 
01:14
-- Created using PowToon -- Free sign up at http://www.powtoon.com/youtube/ -- Create animated videos and animated presentations for free. PowToon is a free tool that allows you to develop cool animated clips and animated presentations for your website, office meeting, sales pitch, nonprofit fundraiser, product launch, video resume, or anything else you could use an animated explainer video. PowToon's animation templates help you create animated presentations and animated explainer videos from scratch. Anyone can produce awesome animations quickly with PowToon, without the cost or hassle other professional animation services require.
Views: 2026 vijeta kamal
BigDataX: Structure of the web
 
01:25
Big Data Fundamentals is part of the Big Data MicroMasters program offered by The University of Adelaide and edX. Learn how big data is driving organisational change and essential analytical tools and techniques including data mining and PageRank algorithms. Enrol now! http://bit.ly/2rg1TuF
Automate Data Extraction – Web Scraping, Screen Scraping, Data Mining
 
01:29
Extract data from unstructured sources with Automate. Learn more: https://www.helpsystems.com/product-lines/automate/data-scraping-extraction Modern businesses run on data. However, if the source of the data is unstructured, extracting what you need can be labor-intensive. For example, you may want to pull information from the body of incoming emails, which have no pre-determined structure. Especially important for today’s enterprises is gleaning data from the web. Using traditional methods, website data extraction can involve creating custom processing and filtering algorithms for each site. Then you might need additional scripts or a separate tool to integrate the scraped data with the rest of your IT infrastructure. Your busy employees don’t have time for that. Any company that handles a high volume of data needs a comprehensive automation tool to bridge the gap between unstructured data and business applications. Automate’s sophisticated data extraction, transformation, and transport tools keep your critical data moving without the need for tedious manual tasks or custom script writing. Learn more: https://www.helpsystems.com/product-lines/automate/data-scraping-extraction
Views: 3275 HelpSystems
Web Usage Mining
 
05:15
Clustering of the web users based on the user navigation patterns....
Views: 7303 GRIETCSEPROJECTS
K mean clustering algorithm with solve example
 
12:13
#kmean datawarehouse #datamining #lastmomenttuitions Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ Buy the Notes https://lastmomenttuitions.com/course/data-warehouse-and-data-mining-notes/ if you have any query email us at [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 354193 Last moment tuitions
Data Structures and Algorithms Complete Tutorial Computer Education for All
 
06:49:24
Computer Education for all provides complete lectures series on Data Structure and Applications which covers Introduction to Data Structure and its Types including all Steps involves in Data Structures:- Data Structure and algorithm Linear Data Structures and Non-Linear Data Structure on Stack Data Structure on Arrays Data Structure on Queue Data Structure on Linked List Data Structure on Tree Data Structure on Graphs Abstract Data Types Introduction to Algorithms Classifications of Algorithms Algorithm Analysis Algorithm Growth Function Array Operations Two dimensional Arrays Three Dimensional Arrays Multidimensional arrays Matrix operations Operations on linked lists Applications of linked lists Doubly linked lists Introductions to stacks Operations on stack Array based implementation of stack Queue Data Structures Operations on Queues Linked list based implementation of queues Application of Trees Binary Trees Types of Binary Trees Implementation of Binary Trees Binary Tree Traversal Preorder Post order In order Binary Search Tree Introduction to Sorting Analysis of Sorting Algorithms Bubble Sort Selection Sort Insertion Sort Shell Sort Heap Sort Merge Sort Quick Sort Applications of Graphs Matrix representation of Graphs Implementations of Graphs Breadth First Search Topological Sorting Subscribe for More https://www.youtube.com/channel/UCiV37YIYars6msmIQXopIeQ Find us on Facebook: https://web.facebook.com/Computer-Education-for-All-1484033978567298 Java Programming Complete Tutorial for Beginners to Advance | Complete Java Training for all https://youtu.be/gg2PG3TwLx4
Decision Tree with Solved Example in English | DWM | ML | BDA
 
21:21
Take the Full Course of Artificial Intelligence What we Provide 1) 28 Videos (Index is given down) 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in Artificial Intelligence Sample Notes : https://goo.gl/aZtqjh To buy the course click https://goo.gl/H5QdDU if you have any query related to buying the course feel free to email us : [email protected] Other free Courses Available : Python : https://goo.gl/2gftZ3 SQL : https://goo.gl/VXR5GX Arduino : https://goo.gl/fG5eqk Raspberry pie : https://goo.gl/1XMPxt Artificial Intelligence Index 1)Agent and Peas Description 2)Types of agent 3)Learning Agent 4)Breadth first search 5)Depth first search 6)Iterative depth first search 7)Hill climbing 8)Min max 9)Alpha beta pruning 10)A* sums 11)Genetic Algorithm 12)Genetic Algorithm MAXONE Example 13)Propsotional Logic 14)PL to CNF basics 15) First order logic solved Example 16)Resolution tree sum part 1 17)Resolution tree Sum part 2 18)Decision tree( ID3) 19)Expert system 20) WUMPUS World 21)Natural Language Processing 22) Bayesian belief Network toothache and Cavity sum 23) Supervised and Unsupervised Learning 24) Hill Climbing Algorithm 26) Heuristic Function (Block world + 8 puzzle ) 27) Partial Order Planing 28) GBFS Solved Example
Views: 225726 Last moment tuitions
Web Data Mining
 
04:16
Data mining tools for getting similarity and classification among different websites.(Naive Bayes Classifier, k-means,others)
Views: 128 Juan Carlos Ucles
Time Series Data Mining Forecasting with Weka
 
04:31
I am sorry for my poor english. I hope it helps you. when i take the data mining course, i had searched it but i couldnt. So i decided to share this video with you.
Views: 24430 Web Educator
Blockchain Basics Explained - Hashes with Mining and Merkle trees
 
03:24
A brief and simple introduction to the hash function and how blockchain solutions use it for proof of work (mining) and data integrity (Merkle Trees).
Views: 215617 Chainthat
Introduction to WebMining - Part 1
 
13:40
Introduction to Web Mining and its usage in E-Commerce Websites. This is part 1. This will contain introduction of the field and in part two we will discuss its usage in E-Commerce website. Please don't forget to give your feedback... :)
Views: 5068 zdev log
Mining Your Logs - Gaining Insight Through Visualization
 
01:05:04
Google Tech Talk (more info below) March 30, 2011 Presented by Raffael Marty. ABSTRACT In this two part presentation we will explore log analysis and log visualization. We will have a look at the history of log analysis; where log analysis stands today, what tools are available to process logs, what is working today, and more importantly, what is not working in log analysis. What will the future bring? Do our current approaches hold up under future requirements? We will discuss a number of issues and will try to figure out how we can address them. By looking at various log analysis challenges, we will explore how visualization can help address a number of them; keeping in mind that log visualization is not just a science, but also an art. We will apply a security lens to look at a number of use-cases in the area of security visualization. From there we will discuss what else is needed in the area of visualization, where the challenges lie, and where we should continue putting our research and development efforts. Speaker Info: Raffael Marty is COO and co-founder of Loggly Inc., a San Francisco based SaaS company, providing a logging as a service platform. Raffy is an expert and author in the areas of data analysis and visualization. His interests span anything related to information security, big data analysis, and information visualization. Previously, he has held various positions in the SIEM and log management space at companies such as Splunk, ArcSight, IBM research, and PriceWaterhouse Coopers. Nowadays, he is frequently consulted as an industry expert in all aspects of log analysis and data visualization. As the co-founder of Loggly, Raffy spends a lot of time re-inventing the logging space and - when not surfing the California waves - he can be found teaching classes and giving lectures at conferences around the world. http://about.me/raffy
Views: 25444 GoogleTechTalks
Mining Web Graph For Recommendation
 
05:20
Title: Mining Web Graph For Recommendation is developed by Mirror Technologies Pvt Ltd -- Vadapalani, Chennai. Domain: Data Mining. Algorithm Used: Query Suggestion Algorithm Key Features: 1. It is a general method, which can be utilized to many recommendation tasks on the Web. 2. It can provide latent semantically relevant results to the original information need. 3. This model provides a natural treatment for personalized recommendations. 4. The designed recommendation algorithm is scalable to very large datasets. Visit http://www.lbenchindia.com/ For more details contact: Mirror Technologies Pvt Ltd #73 & 79, South Sivan kovil Street, Vadapalani, Chennai, Tamil Nadu. Telephone: +91-44-42048874. Phone: 9381948474, 9381958575. E-Mail: [email protected], [email protected]
Views: 776 Learnbench India
Eight Data Science Algorithms | Data Analytics
 
10:26
In this video, you will be introduced to eight very important data science algorithms used by data scientists on daily basis Contact us : [email protected]
Views: 10685 Analytics University
SmarterStats 6.x Web Log Analytics - The Power of Data Mining
 
03:39
See how data mining your Web logs can assist in truly understanding your traffic and learning visitor behavior, troubleshooting page and server issues, and more. Learn more about SmarterStats 6.x Web Log Analytics at: http://www.smartertools.com/smarterstats
Views: 1493 SmarterTools Inc.
What is Web Mining
 
08:56
Views: 13860 TechGig
Identifying Important Features of Users to Improve Page Ranking Algorithms
 
00:51
Web is a wide, various and dynamic environment in which different users publish their documents. Web-mining is one of data mining applications in which web patterns are explored. Studies on web mining can be categorized into three classes: application mining, content mining and structure mining. Today, internet has found an increasing significance. Search engines are considered as an important tool to respond users’ interactions. Among algorithms which is used to find pages desired by users is page rank algorithm which ranks pages based on users’ interests. However, as being the most widely used algorithm by search engines including Google, this algorithm has proved its eligibility compared to similar algorithm, but considering growth speed of Internet and increase in using this technology, improving performance of this algorithm is considered as one of the web mining necessities. Current study emphasizes on Ant Colony algorithm and marks most visited links based on higher amount of pheromone. Results of the proposed algorithm indicate high accuracy of this method compared to previous methods. Ant Colony Algorithm as one of the swarm intelligence algorithms inspired by social behavior of ants can be effective in modeling social behavior of web users. In addition, application mining and structure mining techniques can be used simultaneously to improve page ranking performance.
Views: 6 IJWEST JOURNAL
Detect malicious android applications with data mining techniques
 
03:33
A diploma thesis of one of my undergraduate students. Mr. Konstantinos Ousantzopoulos. ABSTRACT The Android operating system gives access to applications based on model of permissions. In this work we use the permissions of safe and malicious applications as a data structure to excavate knowledge so that we can predict if an application from Google Play is safe or malicious using Rapidminer various data mining techniques and algorithms to get the best possible result. We will show the way data was collected and their analysis to arrive at a desired result which we will apply with an android application and a Java server. The user through a simple android application will be able to type the name of the application on Google Play which wants to check. Then the application will communicate locally with the server where the analysis and prediction through Rapidminer take place . Finally it returns to the screen of the user the prediction whether the application he searched is malicious or not.
Mining Social Networks
 
15:09
This video is part of a series showcasing the use of the ProM process mining framework. Each video focusses on a specific process mining task or algorithm. ProM is open-source and freely available at: http://www.promtools.org In this video we discuss the mining of social networks in order to gain insights into the organizational perspective of a process. This is possible in ProM using the social network mining plug-ins. The theory behind discovering social networks from event logs is described in detail in: http://dx.doi.org/10.1007/s10606-005-9005-9 For more information on process mining, please visit: http://www.processmining.org/ Created by: Niek Tax Special Thanks: Elham Ramezani
Views: 2252 P2Mchannel
Graph Mining Algorithm
 
01:56
Graph Mining Algorithm for temporal dependency discovery developed by INSA Lyons funded by FP7-PEOPLE-2013-IAPP Industry Academia Partnerships and Pathways ID 612334 (2014-2018)
Views: 125 FP7 Graisearch
WDM 112: How a Web Crawler Works
 
12:34
What is crawling For Full Course Experience Please Go To http://mentorsnet.org/course_preview?course_id=1 Full Course Experience Includes 1. Access to course videos and exercises 2. View & manage your progress/pace 3. In-class projects and code reviews 4. Personal guidance from your Mentors
Views: 27705 Oresoft LWC
Awesome Big Data Algorithms
 
39:50
Titus Brown Random algorithms and probabilistic data structures are algorithmically efficient and can provide shockingly good practical results. I will give a practical introduction, with live demos and bad jokes, to this fascinating algorithmic nic
Views: 44038 Next Day Video
[OREILLY] Social Web Mining - Github - Welcome To The Course
 
02:40
The growth of social media over the last decade has revolutionized the way individuals interact and industries conduct business. Individuals produce data at an unprecedented rate by interacting, sharing, and consuming content through social media. Understanding and processing this new type of data to glean actionable patterns presents challenges and opportunities for interdisciplinary research, novel algorithms, and tool development. Social Media Mining integrates social media, social network analysis, and data mining to provide a convenient and coherent platform for students, practitioners, researchers, and project managers to understand the basics and potentials of social media mining. It introduces the unique problems arising from social media data and presents fundamental concepts, emerging issues, and effective algorithms for network analysis and data mining
Views: 151 Freemium Courses
Jure Leskovec: "Large-scale Graph Representation Learning"
 
49:48
New Deep Learning Techniques 2018 "Large-scale Graph Representation Learning" Jure Leskovec, Stanford University Abstract: Machine learning on graphs is an important and ubiquitous task with applications ranging from drug design to friendship recommendation in social networks. The primary challenge in this domain is finding a way to represent, or encode, graph structure so that it can be easily exploited by machine learning models. However, traditionally machine learning approaches relied on user-defined heuristics to extract features encoding structural information about a graph. In this talk I will discuss methods that automatically learn to encode graph structure into low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality reduction. I will provide a conceptual review of key advancements in this area of representation learning on graphs, including random-walk based algorithms, and graph convolutional networks. Institute for Pure and Applied Mathematics, UCLA February 7, 2018 For more information: http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/?tab=overview
Neural Networks Explained - Machine Learning Tutorial for Beginners
 
12:07
If you know nothing about how a neural network works, this is the video for you! I've worked for weeks to find ways to explain this in a way that is easy to understand for beginners. Past Videos: Intro to Machine Learning with Javascript: https://www.youtube.com/watch?v=9Hz3P1VgLz4&list=PLoYCgNOIyGABWLy_XoLSxTVRe2bltV8GM&index=2&t=0s Machine Learning 2 - Building a Recommendation Engine: https://www.youtube.com/watch?v=lvzekeBQsSo&list=PLoYCgNOIyGABWLy_XoLSxTVRe2bltV8GM&index=3&t=0s Machine learning and neural networks are awesome. This video provides beginners with an easy tutorial explaining how a neural network works - what math is involved, and a step by step explanation of how the data moves through the network. The example used will be a feed forward neural network with back propagation. It explains the difference between linear and non linear data, the importance of the activation function, learning rate, and momentum configurations. -~-~~-~~~-~~-~- Also watch: "Responsive Design Tutorial - Tips for making web sites look great on any device" https://www.youtube.com/watch?v=fgOO9YUFlGI -~-~~-~~~-~~-~-
Views: 103110 LearnCode.academy
"Text Mining Unstructured Corporate Filing Data" by Yin Luo
 
45:33
Yin Luo, Vice Chairman at Wolfe Research, LLC presented this talk at QuantCon NYC 2017. In this talk, he showcases how web scraping, distributed cloud computing, NLP, and machine learning techniques can be applied to systematically analyze corporate filings from the EDGAR database. Equipped with his own NLP algorithms, he studies a wide range of models based on corporate filing data: measuring the document tone or sentiment with finance oriented lexicons; investigating the changes in the language structure; computing the proportion of numeric versus textual information, and estimating the word complexity in corporate filings; and lastly, using machine learning algorithms to quantify the informative contents. His NLP-based stock selection signals have strong and consistent performance, with low turnover and slow decay, and is uncorrelated to traditional factors. ------- Quantopian provides this presentation to help people write trading algorithms - it is not intended to provide investment advice. More specifically, the material is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory or other services by Quantopian. In addition, the content neither constitutes investment advice nor offers any opinion with respect to the suitability of any security or any specific investment. Quantopian makes no guarantees as to accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances.
Views: 1874 Quantopian
R tutorial: What is text mining?
 
03:59
Learn more about text mining: https://www.datacamp.com/courses/intro-to-text-mining-bag-of-words Hi, I'm Ted. I'm the instructor for this intro text mining course. Let's kick things off by defining text mining and quickly covering two text mining approaches. Academic text mining definitions are long, but I prefer a more practical approach. So text mining is simply the process of distilling actionable insights from text. Here we have a satellite image of San Diego overlaid with social media pictures and traffic information for the roads. It is simply too much information to help you navigate around town. This is like a bunch of text that you couldn’t possibly read and organize quickly, like a million tweets or the entire works of Shakespeare. You’re drinking from a firehose! So in this example if you need directions to get around San Diego, you need to reduce the information in the map. Text mining works in the same way. You can text mine a bunch of tweets or of all of Shakespeare to reduce the information just like this map. Reducing the information helps you navigate and draw out the important features. This is a text mining workflow. After defining your problem statement you transition from an unorganized state to an organized state, finally reaching an insight. In chapter 4, you'll use this in a case study comparing google and amazon. The text mining workflow can be broken up into 6 distinct components. Each step is important and helps to ensure you have a smooth transition from an unorganized state to an organized state. This helps you stay organized and increases your chances of a meaningful output. The first step involves problem definition. This lays the foundation for your text mining project. Next is defining the text you will use as your data. As with any analytical project it is important to understand the medium and data integrity because these can effect outcomes. Next you organize the text, maybe by author or chronologically. Step 4 is feature extraction. This can be calculating sentiment or in our case extracting word tokens into various matrices. Step 5 is to perform some analysis. This course will help show you some basic analytical methods that can be applied to text. Lastly, step 6 is the one in which you hopefully answer your problem questions, reach an insight or conclusion, or in the case of predictive modeling produce an output. Now let’s learn about two approaches to text mining. The first is semantic parsing based on word syntax. In semantic parsing you care about word type and order. This method creates a lot of features to study. For example a single word can be tagged as part of a sentence, then a noun and also a proper noun or named entity. So that single word has three features associated with it. This effect makes semantic parsing "feature rich". To do the tagging, semantic parsing follows a tree structure to continually break up the text. In contrast, the bag of words method doesn’t care about word type or order. Here, words are just attributes of the document. In this example we parse the sentence "Steph Curry missed a tough shot". In the semantic example you see how words are broken down from the sentence, to noun and verb phrases and ultimately into unique attributes. Bag of words treats each term as just a single token in the sentence no matter the type or order. For this introductory course, we’ll focus on bag of words, but will cover more advanced methods in later courses! Let’s get a quick taste of text mining!
Views: 26181 DataCamp
Social Network Analysis
 
02:06:01
An overview of social networks and social network analysis. See more on this video at https://www.microsoft.com/en-us/research/video/social-network-analysis/
Views: 4615 Microsoft Research
Efficient Algorithms for Mining Top-K High Utility Itemsets
 
07:11
Efficient Algorithms for Mining Top-K High Utility Itemsets TO GET THIS PROJECT IN ONLINE OR THROUGH TRAINING SESSIONS CONTACT: Chennai Office: JP INFOTECH, Old No.31, New No.86, 1st Floor, 1st Avenue, Ashok Pillar, Chennai – 83. Landmark: Next to Kotak Mahendra Bank / Bharath Scans. Landline: (044) - 43012642 / Mobile: (0)9952649690 Pondicherry Office: JP INFOTECH, #45, Kamaraj Salai, Thattanchavady, Puducherry – 9. Landmark: Opp. To Thattanchavady Industrial Estate & Next to VVP Nagar Arch. Landline: (0413) - 4300535 / Mobile: (0)8608600246 / (0)9952649690 Email: [email protected], Website: http://www.jpinfotech.org, Blog: http://www.jpinfotech.blogspot.com High utility itemsets (HUIs) mining is an emerging topic in data mining, which refers to discovering all itemsets having a utility meeting a user-specified minimum utility threshold min_util. However, setting min_util appropriately is a difficult problem for users. Generally speaking, finding an appropriate minimum utility threshold by trial and error is a tedious process for users. If min_util is set too low, too many HUIs will be generated, which may cause the mining process to be very inefficient. On the other hand, if min_util is set too high, it is likely that no HUIs will be found. In this paper, we address the above issues by proposing a new framework for top-k high utility itemset mining, where k is the desired number of HUIs to be mined. Two types of efficient algorithms named TKU (mining Top-K Utility itemsets) and TKO (mining Top-K utility itemsets in One phase) are proposed for mining such itemsets without the need to set min_util. We provide a structural comparison of the two algorithms with discussions on their advantages and limitations. Empirical evaluations on both real and synthetic datasets show that the performance of the proposed algorithms is close to that of the optimal case of state-of-the-art utility mining algorithms.
Views: 1053 jpinfotechprojects
What is Spatial Data - An Introduction to Spatial Data and its Applications
 
08:03
Learn more advanced front-end and full-stack development at: https://www.fullstackacademy.com Spatial Data, also referred to as geospatial data, is the information that identifies the geographic location of physical objects on Earth. It’s data that can be mapped, as it is stored as coordinates and topology. In this video, we introduce the concept of Spatial Data and break down the fundamentals of interacting with Spatial Data using common development tools. We then explore how these basics can be expanded upon in modern applications to assist in daily tasks, perform detailed analyses, or create interactive user experiences. Watch this video to learn: - What is Spatial Data - How and when to use Spatial Data - Spatial Data Examples and real-world applications
Views: 9195 Fullstack Academy
Genetic Algorithms - Georgia Tech - Machine Learning
 
04:54
Watch on Udacity: https://www.udacity.com/course/viewer#!/c-ud262/l-521298714/m-534408627 Check out the full Advanced Operating Systems course for free at: https://www.udacity.com/course/ud262 Georgia Tech online Master's program: https://www.udacity.com/georgia-tech
Views: 14380 Udacity