HomeОбразованиеRelated VideosMore From: jpinfotechprojects

Mining User Queries with Markov Chains Application to Online Image Retrieval

1 ratings | 594 views
To get this project in ONLINE or through TRAINING Sessions, Contact: JP INFOTECH, 45, KAMARAJ SALAI, THATTANCHAVADY, PUDUCHERRY-9 Landmark: Opposite to Thattanchavady Industrial Estate, Next to VVP Nagar Arch. Mobile: (0) 9952649690 , Email: [email protected], web: www.jpinfotech.org Blog: www.jpinfotech.blogspot.com Mining User Queries with Markov Chains Application to Online Image Retrieval | 2013 IEEE We propose a novel method for automatic annotation, indexing and annotation-based retrieval of images. The new method, that we call Markovian Semantic Indexing (MSI), is presented in the context of an online image retrieval system. Assuming such a system, the users' queries are used to construct an Aggregate Markov Chain (AMC) through which the relevance between the keywords seen by the system is defined. The users' queries are also used to automatically annotate the images. A stochastic distance between images, based on their annotation and the keyword relevance captured in the AMC is then introduced. Geometric interpretations of the proposed distance are provided and its relation to a clustering in the keyword space is investigated. By means of a new measure of Markovian state similarity, the mean first cross passage time (CPT), optimality properties of the proposed distance are proved. Images are modeled as points in a vector space and their similarity is measured with MSI. The new method is shown to possess certain theoretical advantages and also to achieve better Precision versus Recall results when compared to Latent Semantic Indexing (LSI) and probabilistic Latent Semantic Indexing (pLSI) methods in Annotation-Based Image Retrieval (ABIR) tasks.
Html code for embedding videos on your blog
Text Comments (0)

Would you like to comment?

Join YouTube for a free account, or sign in if you are already a member.